Hilbert's Tenth Problem for function fields of varieties over number fields and p-adic fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HILBERT’S TENTH PROBLEM FOR FUNCTION FIELDS OF VARIETIES OVER NUMBER FIELDS AND p-ADIC FIELDS

Let k be a subfield of a p-adic field of odd residue characteristic, and let L be the function field of a variety of dimension n ≥ 1 over k. Then Hilbert’s Tenth Problem for L is undecidable. In particular, Hilbert’s Tenth Problem for function fields of varieties over number fields of dimension ≥ 1 is undecidable.

متن کامل

Hilbert’s Tenth Problem for Function Fields of Varieties over Algebraically Closed Fields of Positive Characteristic

Let K be the function field of a variety of dimension ≥ 2 over an algebraically closed field of odd characteristic. Then Hilbert’s Tenth Problem for K is undecidable. This generalizes the result by Kim and Roush from 1992 that Hilbert’s Tenth Problem for the purely transcendental function field Fp(t1, t2) is undecidable.

متن کامل

Hilbert’s Tenth Problem over Rings of Integers of Number Fields

This is a term paper for Thomas Scanlon’s Math 229, Model Theory, at UC Berkeley, Fall 2006. The goal of this survey is to understand Bjorn Poonen’s theorem about elliptic curves and Hilbert’s Tenth problem over rings of integers of number fields and to record and exposit a few ideas which may be useful in an attack with Poonen’s theorem as a starting point.

متن کامل

Hilbert’s Tenth Problem for Algebraic Function Fields over Infinite Fields of Constants of Positive Characteristic

Let K be an algebraic function field of characteristic p > 2. Let C be the algebraic closure of a finite field in K. Assume that C has an extension of degree p. Assume also that K contains a subfield K1, possibly equal to C, and elements u, x such that u is transcendental over K1, x is algebraic over C(u) and K = K1(u, x). Then the Diophantine problem of K is undecidable. Let G be an algebraic ...

متن کامل

Additive Complexity and Roots of Polynomials Over Number Fields and p-adic Fields

Consider any nonzero univariate polynomial with rational coefficients, presented as an elementary algebraic expression (using only integer exponents). Letting σ(f) denotes the additive complexity of f , we show that the number of rational roots of f is no more than 15 + σ(f)(24.01)σ(f)!. This provides a sharper arithmetic analogue of earlier results of Dima Grigoriev and Jean-Jacques Risler, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2007

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2006.09.032